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Abstract

Genetic and evolutionary algorithms have
long been used for optimized design of
building structures. Optimized design using
these techniques has most often utilized
binary strings to represent individuals.
Object oriented programming (OOP) affords
convenient encapsulation of building
components, which in tum allows alternate
methods for representing design variables
within EA's. Advanced analvsis based
optimization combines inelastic analysis and
constraints in such a manner that design
specifications and codes are not needed.
Therefore, advanced analysis-based design
has many of the elements of performance-
based design. The present paper outlines
and evaluates an automated design
procedure that uses an object-oriented
evolutionary algorithm with advancec
analysis to desigrr steel frameworks.

INTRODUCTION

Binary string representations of design variables has
been the de-facto standard means with which to
implement design optimization using genetic and
evolutionary algorithms. Variations on a theme have
been developed (Parmee 1995), but there has been
little research related to new mechanisms by which
structural engineers can represent desigrr variables.

Object-oriented programming (OOP) has created a
very convenient way to accomplish encapsulation in
computer programs. The encapsulation (packaging)
offered by OOP has resulted in stuchual engineers
formulating new ways to represent building
structures on the computer (Rivard and Fenves
2000). A building structure can be visualized as a
hierarchy of objects as shown in Figure 1.
Encapsulating building components as objects
creates a mechanism by which system optimization
can occur. Consider two individuals present in a
generational snapshot of the evolution (Figure 2).
Individual I (the contol individual) is a hybrid
structural steel-concrete framework where a moment
resisting frame interacts with concrete shear walls to
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resist lateral loading. krdiyidual 2 contains an
eccentrically braced frame @BF) bay.

Figure l: Building Object Hierarchy
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Figure 2: Object Crossover in Buildings

If the binary string representation was used to
accomplish crossover, the allele describing a shear
wall would most likely be &astically different than
the allele describing an EBF. As a result, crossover
of these two elements might not make sense.
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However, to the structural engineer, swapping shear
wall and EBF objects between individuals may
result in rnore efficient hvbrid frameworks.

2 OBJECT.ORIENTED EVOLUTIONARY
ALGORITHM

An OO-EA differs from the binary genetic algorithm
in the manner which crossover and mutation affects
the individuals in the population (Figure 3),

INDryIDUAL A

INDryIDUAL B

An object-oriented evolutionary algorithm was
written to solve the problem. Two design variable
objects were used in a very small hierarchy (Figure
4).
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Figure 3: Crossover Operation Comparison

Assume that the four-bit binary strings represent
wide-flange shapes. Traditional one point crossover
at point 1 creates a new shape in the offspring which
can be considered as rnutation at the design variable
level. Variables xz remain intact (but are
exchanged). If one-point crossover at point 2
occurs, design variables are exchanged. Uniform
cross-over creat€s new genetic material for both
design variables.

Object crossover acts much like one-point crossover
at point 2 in Figure 3. It does not create new genetic
material in the offspring, but merely exchanges it.
As a result, the crossover and mutation operations
are completely divorced from one another.

A quick example can be formulated to illustrate the
behavior of an object oriented EA. Consider the
optimization problem outlined below:

Minimize: /(X) = 
]-: 

. r,rr*Jr,'

x ,  +x,  >8

Subject To: .x, > 0
x,  )0

The optimal solution, to this problem has been
computed as X = | 6 2 lby Jenkins (1991).

Figure 4: Simple Object Crossover for Two
Variable Optimization Problem.

Two bpes of design variable crossover were
implemented (Figure 4). Homologous crossover can
be seen to merely swap genes (ie. design variables),
while non-homologous crossover moves the genes
along the chromosome. Mutation is a random change
in value within a predefined range.

Research has been undertaken to elucidate the
disruotive and beneficial nature of binary crossover
and mutation in the evolutionary procesj(Wrr, et.al.
1997). The present object formulation has the
possibility to foster the creation and retention of
beneficial building blocks. However, the object
representation requires crossover and mutation be
studied to ensure exploration ofthe design space.

Numerical simulation was undertaken to empirically
explore the object representation and its ability to
reliably find the solution that minimizes the
previously discussed function. Design variables
were restricted to integer values, r, cll-+i5[ . A
general crossover probability, p" wai defin-ed as
well as subsequent probability of non-homologous
crossover, pn' . The probability of design variable
mutation, p., was also defined,. Linear scaling of
the fibress values was used and fitness proportional
(roulette wheei) selection was employed (Jenkins
1991). Success of the object-oriented evolutionary
algorithm is defined as finding the optimal solution.

A small emprical study was undertaken to evaluate
the effect of population size on the success of the
evolutionary algorithm proposed. The results of this
study are given in Table 1.
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Table 1: Effect of Pooulation Size on Success of
OO Evolutidnary Algorithm:
P" =0.60,  P*  = o '0 .

Population Mutation Success
Size Rate Rate (%)

0.25
0.25
0.2s 93
0.30

It was also decided to evaluate the effect of mutation
rate on the smallest population. This effect on the
OO-EA's success is given in Table 2.

Table2: Effect of Mutation Rate on Success of OO
Evolutionary Algorithm:
p" =0.60, p* = 0.0, Nro,, = 20.

Mutation Success
Rate__lB4!91%)_

0.40 53
0.60 80
0.80 93
1.00 87

Voss and Foley (1999) studied the effect of non-
homologous crossover on a simple cantilever
optimization problem. The genetic representation
(although hierarchical) in this former study did not
utilize objects and therefore, it was decided to study
the effect of non-homologous crossover on the OO-
EA (Table 3).

Table 3: Effect of Population Size and Mutation
Rate on Success of OO Evolutionarv
Algori thm: p,=0.60.

Population Non-Ifomologous Success
Size Crossover Rate Rate (7o)

0.20 40
0.40 40

population during the evolution. lf a small
population is used, non-homologous crossover can
improve the evolutionary search. However, the
improvement is not as appreciable as mutation.
When population sizes are sufficiently large (40
individuals in this case), the non-homologous
crossover has less impact on the success rate.

Crossover operations are important to the OO-EA as
with binary genetic algorithms. However, one
should recognize that the non-homologous operator
is important when more desigSr variables are present
and/or the hierarchical representation is "deep"
(Voss and Foley 1999). This ensures that the
crossover operations are able to move the genetic
material around and explore building block
formation.

3 ADVANCED ANALYSIS BASED DESIGN
OF FR AND PR FRAMES

Advanced analysis of steel frames is related to the
plastic design methodologies used for rigid frame
steel buildings. The goal of advanced analysis is to
create a design basis capable of omitting
specification equations (LRFD 1999). However, a
requirement of advanced analysis based design is
that the analysis employed should be capable of
considering all critical aspects of steel member
behavior used to develop the specification design
equations (SSRC 1988). Excellent reviews related
to the basic assumptions and requirements of
advanced analysis are available @ridge, et.al. 1998;
White 1993).

An advanced analysis is capable of addressing
individual member strengths in light of the
redundancy present in the framework. Therefore,
performance-based design criteria are easily
incorporated into optimized design algorithms that
employ advanced analysis.

3.1 OBJECTTVE FUNCTION

The objective function is based on modified frame
weight (Xu, et.al. 1995),

f(u^" \ IL^A_p^L[t rJ-tj (r)
where: Z is the member length; I is the cross-
sectional area; and p is the material density. The
modiffing factor, (, accounts for the connection at
the beam ends.
Partially and fully restrained connection variations
were defined using non-dimensional curyes
(Bjorhovde, et.al. 1990). These curves were
established in such a manner that a full range of
connection strength and stiffness were present.
Fully resfained connections were denoted as Cl

5320
7330

93
40

20
P^ =0.25 0.60 53

0.80 67
1.00 67

ly'd Na

w=LLrArpr*L
,t ' l  n=l

40
P, = 0.30

0.20
0.40
0.60
0.80
1.00

93
80
93
87
60

The success rate of the OO-EA appears to be linked
to the population size. For small populations, the
mutation rate should remain high so that sufficient
new genetic material can be introduced in the
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while flexible connections were denoted C5. Three
connections existed between these limits.

3.2 CONSTRAINTS
Advanced analysis based design allows lowlevel
behavioral constraints to be established. This in-turn
allows performance constraints to be easily
incorporated into optimization algorithms.
Constaints must be established at both service and
ultimate load levels.

Service load level conshaints used in the advanced
analysis based design optimization were:

1. applied load ratio for load combinations,
2. connectionrotations,
3. lateral (inter-story) drift,
4. vertical deflection of beams,
5. cross-sectionplastification.

IJltimate (strength) load level constraints were:
l. applied load ratio for load combinations,
2. connection rotations,
3. plastic hinge curvature,
4. out-of-plane compression buckling,
5. unbraced length for lateral torsional

buckling.

An additional constaint, designer preference, was
included. This consffaint was established to ensure
the colurnn below has a nominal depth and weight
Iarger than the column above.

4 EVOLUTIONARYALGORITHM

An evolutionary algorithm was used to automate the
design of partially and fully restrained steel frame
configurations with fixed topology. The small
empirical study discussed previously was used to
initially assign mutation and crossover rates.

4.I FITNESS

The fitness statement used for the evolutionarv
algorithm is similar to that suggested by Pezesh(
et.al. (2000),

f =wfra,
i- l

where: l/ is defined in (l) and @, are total penalties
corresponding to the constraints in the problem.

4.2 PENALTIES

Penalties were written in a form suitable for
inclusion in equation (2). For example, the plastic
hinge rotation penalty at ultimate load levels is
wTltten as,

0* = *  <7.0
Kti-i

where the plastic hinge curvature limit is taken from
Yura, et.al. (1978),

. 
gF,db

Kriri, = **r =-E-

All penalties including the designer preference
penalty were scaled using (Camp, et.al. 1998),

p i  =1.0 +k(dr- l ) "  (4)

The exponent, s, was taken to be 1.0 indicating
linear scaling. The parameter t was taken to be 5.0.
It should be noted that equation (4) is only
applicable when /, > 1.0.

The total penalty for plastic hinge rotation at
ultimate load levels is computed using,

du N,'*

o* =ff fl (r,)."
where: Nu is the number of ultimate load cases (3 in
this study); N.**^ is the number of members.

Further details regarding the formulation of the
penalties used in this study can be found in Schinler
(2001).

4.3 SELECTION

Population partitioning (Camp, et.al. 1998; Pezeshh
et.al. 2000) is used for selecting individuals for
mating. This scheme allows the selection pressure
to be controlled and has been found to be effective
for the building optimization problems studied.
Tournaments were then utilized to assisn the matine
pool.

4,4 CROSSOVER AND MUTATION

Crossover is performed after choosing two
individuals from the mating pool constructed using
the selection mechanism. Each individual in this
new population is then considered a conftol
individual (refer to Figure 2). Amate (not the same
individual) is then chosen from the mating pool.
Crossover results in one new individual being
created.
In the present sfudy, each column, beam, and
connection object in the control individual is chosen
for possible crossover. If a random number satisfies
the crossover probabiliff, p", then crossover will
take place with the object in the contol individual
being exchanged with a similar object in the mate.
A second random number is called and if it satisfies
the non-homologous crossover rate, p,,n, non-
homologous crossover occurs. If it does not satisfy
this rate, homologous crossover is performed.

Mutation is performed at the object level
corresponding to buildings, stories, beams, columns,
and connections. A mutation rate, pa, is

(s)

(2)

(3)
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established for each of these objects. Mutation takes
place after the crossover operations.

5 FRAME DESIGNS

The frame chosen for implementation of the object-
oriented evolutionary algorithm is the same as the
one used by Xu, et.al. (1995). Figure 6 provides an
illustration of the framework loading and topology.
All beams and columns are assumed to be Grade
,4'36 steel. The connections used in the present
study follow the non-dimensional connection curves
previously described.

Results for the two frame designs with comparison
to the results obtained by Xu, et.al. (1995) are found
in Table 6. Connection C4 is one step up from
flexible (C5),

Table 6: Frame Weight Comparisons (lbs.)

Frame Xlu, et.al. (1995) Present
FR

PR

7,03r

6,712

7,086

l|xT_8i 6,468
Convergence hajectories of the fittest feasible
individual are given in Figures 7 and 8.

OL. 0.028 Mn. LL = 0.083 k/ln.

Figure 6: Steel Frame Used in the Present Study.

The interior columns and exterior columns are
grouped within each story. Furthermore, the beams
in any story are assumed to be the same (including
connections). The connections at each end of the
beams are required be the same. As a result, the
present problem has a total of 6 design variables for
the fully restrained (FR) case and 8 design variables
for the partially restrained (PR) frame. \

The inelastic analysis used to establish an
individual's fitness is based on the distributed
plasticity model. Zerc lenglh connection elements
are used on all beams. Details of this inelastic
analysis model can be found in Foley and Vinnakota
(1999). Other details regarding the OO-EA can be
found in Schinler (2001).

The evolutionary algorithm parameters used in the
analyses are as follows. The mutation rate was kept
constant throughout the evolution. The fixed rate for
beams, columns and connections (where applicable)
was 30%. Crossover was restricted to columns,
beams and connections. The probability of
crossover was set at 60%o with the subsequent rate of
non-homologous crossover set at 50%. The
partitioning scheme resulted in the mating pool
being developed from the top 40% of the population.
krdividuals were selected to enter two-at-a-time
toumaments from this upper partition 70yo of the
time.
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Figure 7: FR Frame Convergence Trajectories
the Fittest Feasible Individual.
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Figure 8: PR Frame Convergence Trajectories for
the Fittest Feasible Individual.

The evolutionary algorithm developed exhibits
stable convergence characteristics. It should be
noted that the fitness illustrated in the figures is the
modified weight. This weight includes connection
modification factors. As one can see, the same
individual does not result for all the runs. Further
study of the results during the evolution revealed
that the algorithm was making concessions among
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design variables and constraints and therefore, the
same individual might not be expected.
Table 6 iliustrates that the present algorithm and the
optimization problem formulated gives results
consistent with those of past researchers.

6 CONCLUSIONS

An object-oriented evolutionary algorithm has been
described. The OO representation of design
variables has been shown to exhibit slishtlv different
overall behavior than genetic algolrithhs using
binary strings for design variable representation.
Two types of crossover have been discussed and
applied within the context of the object-oriented
representation. A short empirical study illusfrated
that object-oriented EA's may require larger
populations and higher mutation rates that the
corresponding binary GA.
An optimization problem implementing advanced
analysis based design assessment was forrnulated.
Discussion of the penalties needed for the inelastic
analysis based design process was provided. A two
story, three bay steel frame was desigrred using the
object oriented evolutionary algorithm with fully
restained and partially restrained connections. The
results provided illustrate that the object oriented EA
can achieve designs consistent with those obtained
by past researchers.
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